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The AEF is the Cradle of The Modern “Right-Rate School”
of Option Pricing Theory

Gary S. Moore, The University of Toledo
Abstract

Responding to the need for a more fruitful orientation for option pricing research, this paper outlines developments in the
modern “right-rate school” of option pricing which embraces a critical role for risk preferences as an essential part of its
theoretical foundation. It is controversial since it is counter to the theoretically orthodox risk-neutral valuation framework. The
contentious theory was nurtured by the supportive environment that prevails in the Academy of Economic and Finance (AEF)
meetings. This paper outlines the history of the development of the school through a review of the papers presented at the AEF
meetings.

JEL Codes: G10, G13
Keywords: Options, Right-Rate School

Introduction

A new guiding premise is needed in option pricing research. This paper will review the development of a prospective
source of guidance, the modern “right-rate school” of option pricing theory. The theory embraces a critical role for risk
preferences (reflected in the return to the stock and the option) as its theoretical basis. Early option pricing researchers such as
Sprenkle (1961) and Samuelson (1965), also incorporated a role for both the return on the stock and the return on the market
in option pricing theory. However, with the advent of the Black Scholes model (1973), those roles were obliterated. Risk-
neutral valuation was heralded as “the single most important tool” for the analysis of derivatives (Hull (1989). Risk-neutral
valuation is a direct consequence of the fact that no variables such as the stock return that are affected by risk preferences
appear in the Black Scholes Model. It is considered to be a corollary of the validity of the Black Scholes model. Few challenges
to the new Black Scholes model were raised initially because in most cases the heralded model worked well (Rubinstein, 1985).
Two professors associated with its origin (Scholes and Merton) were awarded the Nobel prize in 1997. The profession largely
turned its back on many of the theoretical developments of the 1950s and 1960s in favor of a foundation based upon the Black
Scholes model and its analog, risk neutral valuation. Extensive early empirical tests (Rubinstein, 1985) supported this
orientation.

By the 1980s there was increased evidence that the model was no longer working satisfactorily. A distinct pattern of
volatility estimates implied by the model which were basic to the validity of the Black Scholes model ceased to appear in
empirical tests (Bates, 2003). The model required constant volatility across an option chain (options on the same stock on the
same day) with different exercise prices. The patterns, particularly in the equities markets, were systematic and unexplained by
the theory (Rubinstein, 1994; Bates, 2003). The equity pattern has been described as a smirk (Hull, 2009). In the light of this,
option models which embraced multiple alternative stock distributions such as the Cox (1976) and Cox and Ross (1976)
constant elasticity of variance model or the Heston (1993) stochastic volatility model were increasingly embraced and tested.
But none of these appeared to solve this new riddle (Bates, 2003).

Moore (1997; 1999; 2001; 2003; 2005) suggested that the problem might be related to the absence of the risk preference
variables in the option modeling process. This reintroduction of risk preference into option pricing theory is called the modern
“right-rate school” of option pricing. If this orientation is true, it undermines a significant part of the status quo option theory
which embraced risk neutral valuation. It also undermines the dominant theoretical paradigm in option pricing theory, the Black
Scholes option pricing model and its accompanying logic as well as any spinoff models. A contrary view can be seen in modern
textbooks (Hull, 2009; 2016) which suggest explanations for the volatility smirk like asymmetric stock distributions, leverage
and crashaphobia which may be considered consistent with the risk neutral framework. Thus, the theories will need to battle
for theoretical supremacy.

Thus, the modern “right-rate school” of option pricing theory is one of the most significant, but disruptive developments
in option pricing theory in the last few decades. It threatens to disrupt the traditional focus of options research which operates
on a foundation of risk neutral pricing. It proposes a completely new explanation for the patterns of the implied volatility smile
(Hull, 2009; Bates, 2003) or smirk (Hull, 2009) that were documented in the Black Scholes model (Macbeth and Merville,
1979; 1980) by suggesting that differences in rates are the driving force (Moore, 2003). The validity of risk neutral valuation
or pricing (Hull, 1989) is challenged. The general failure of almost all proposed alternative option pricing models is explained
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because they are all derived from the risk neutral assumptions which are the foundation of the Black Scholes model. Finally, it
significantly diminishes the role of the 1973 Black Scholes option pricing model in financial economics and option pricing
theory.

That such a disruptive force could be nurtured and have nearly all its origins in the strongly supportive and friendly climate
of the Academy of Economics and Finance (AEF) is probably not a surprise. After risk neutral pricing rose to theoretical
prominence, theories like the modern “right-rate school” were not well received. Consequently, serious dissent from the status
quo risk neutrality framework needed a less judgmental outlets like the Academy of Economics and Finance. Merton (2006)
says that Samuelson had lamented his regret that Samuelson (1965) had been “a near miss” in the face of the Black Scholes
triumph. Sprenkle’s (1961) paper was in effect dumped into the ashbins of history by the rise of risk neutral pricing. Moore’s
papers presented at the AEF represented the reemergence for the role of the stock return and the option return in option pricing
theory. Earlier models like Samuelson (1965) were consistent with discounted cashflow pricing being applied to options. The
papers show that Moore had an unabating respect for Samuelson. Samuelson died not realizing that his work like the Sprenkle
(1961) work was much less of a “near miss” than he thought. The assumptions of the “right-rate school” are supported by the
work reported at the AEF. Economic history should elevate the value of Samuelson’s contributions from the early 1950s and
1960s option research which included his students as well as his own work. As the chief protagonist of the “right-rate school”
for over a twenty-year period, Moore’s works presented at the AEF suggests papers like Samuelson’s and Sprinkle’s work
deserves more assiduous study. An idea grows, like money grows--where it is well treated. In this article, an outline of how
interactions with the organization led to the continued development of the “right-rate” theory is provided.

The Modern “Right-Rate School” of Option Pricing Theory

The “right-rate school” of option pricing theory has as its foundation the generic Feynman-Kac formulation, (Alghassi et al.
2022; Cairoli and Baule, 2017; Janson and Tysk, 2006) which in the context of options is

‘%’+a(s,t)%+b(s.t)%+f(t)=c(s,t)0Ffort<T, (1)
Or(s,T) = Op(s) )

where a is the Brownian motion term, b is the drift rate expression and c is the discount rate term. O is the option value while
s is the stock price. The second expression states that the option is a function of the value at expiration and the stock price. The
f(t) is a functional which is often set to zero depending upon how a functional is thought to be related to the particular situation.
The nomenclature for time is t while the expression for the maturity date is T. The terminal boundary condition in call options
is probably better described

Or(s,T) = Op(s — x,0) 3)

where s-x is the stock price minus the exercise price X.

The implied ansatz derived from the Black Scholes hedging argument suggests that given a lognormal distribution and stock
return and option return equal to the risk-free rate that the coefficients for the generic Feynman Kac formulation (Alghassi et
al. 2022) with f(t) = 0 should be

0.2
a= 752 b=7rS andc=r 4)

which leads to the expression
00F a? 2 620F

Or+ 252 Sy rs D= 10, (5)
When rearranged this expression is the Black Sholes partial differential equation (PDE) that is often seen in textbooks as the
Black Scholes partial differential equation (Hull, 2009).

The “right-rate school” uses a different ansatz which is inspired by the expression following from the application of Ito’s
Lemma (1951) to the underlying stock return process. Assume like many others (Sprinkle, 1961; Samuelson, 1965; Black and
Scholes, 1973) that there is a single risky asset which follows a geometric Brownian motion:

as

?=udt+adz or dS=uSdt+oSdz (6)
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with constant drift terms arithmetic mean return w. It is useful to be aware that dz, the Weiner process term, has the following
properties: 1) The mean of dz = 0, 2) The standard deviation of dz =+/dt , and 3) The variance of dz = dt. Applying Ito’s lemma
(Ito, 1951; Hull, 1989, p. 82) leads to the description of the option price process as:
d0 = (LZus+2 +122 5252) 4t + 2 554z )

The first part of the expression is the first moment. Therefore, it can be seen as the expectation term while the second term
is the variance. The mathematics for Ito’s lemma (1951), although an approximation of a Taylor series is unchallenged. The
“right-rate school” argues there is no need to proceed to a different partial differential equation as the basis for option pricing
theory. In a greatly expanded paper on the issue (Moore, 2023) explains in greater detail why the Black Scholes arguments
fails to hold up. The “right-rate school” thus focuses upon the logical ansatz which flows from the application of Ito’s lemma
to a lognormal stock price. It rejects the proposition that the effects of the stock return and the effects of the option effectively
cancel each other out as proposed by the current dominant status quo research paradigm.

Since the mean of dz = 0, it would be expected that it would have no effect on the expectation solution that would follow in
the application of the Feynman-Kac theorem. Focusing in on the first moment term and dropping the variance term gives us:

(90 80 | 19%0 2)
do = (2us+22 +222 525%)dt ®)

The drift term can be expressed as either the arithmetic mean u or the geometric mean a. The difference is the geometric
mean a requires the convexity correction. This involves the subtractions of % 02 from the arithmetic mean u. This logic

suggests an ansatz for coefficients in the generic Feynman Kac formulation with f(t) = 0 and with
2
a=>-5 b=aS andc=Bso dO=B0 )

Substituting these values in the generic Feynman Kac formulation with the drift rate, a, set at aS (the return on the stock
times the stock price S and the discount rate, c, set at § the option price return and setting the f(t) value equal to O results in a
partial differential equation to model the process as:

00F
at

a? a%0 a0
+ 752 F 4 asZE

952 E = ﬁ OF fOT t<T (10)

The solution domain should have the same boundary conditions for the solution domain as Black Scholes (1973):

Op (Sr,t) =~ 0(S; —e™X) (1)
0r(0,t)=0 (12)
O (Sy,T) = max (S — X,0) (13)

The Feynman Kac theorem provides the linkage from this partial differential equation to an expectation solution. Equation (10)
is thus the fundamental partial differential equation of the “right-rate school.” It is interesting to note that equation 10 follows
from equation 4 in the Black Scholes (1973) paper. It is also very similar to equation 27 in Samuelson (1965) except that the
coefficients in Samuelson’s equation seem to reflect a normal rather than lognormal process. The solution is not analytical
since the analytical solvable “heat equation” used by Black and Scholes (1973) only allows a single rate.

The use of the general path integral algorithm (Alghassi et al., 2022; Cairoli and Baule, 2017; Janson and Tysk, 2006) is
probably the best approach. Richard Feynman discovered that certain partial differential equations like those in the general
Feynman Kac formulation above could best be solved by “averaging” over paths. His discovery led to the reformulation of the
quantum theory in terms of his “path integrals”. The Alghassi et al. (2022) technique offers one method of solving these certain
partial differential equations by simulating random paths of the stochastic process with greater speed, although it is not easy to
program. The technique represents a faster solution than the traditional Monte Carlo methods. The Moore’s R algorithm
(Moore, 2003) discussed later is very easy to program even with a simple Excel spreadsheet but it approximates a solution. It
also requires an appropriate value for the “combined rate”. As the Moore (2003) algorithm uses the same thermodynamic
mathematics as Black Scholes, it has its own limitations. The use of thermodynamics mathematics means that only a single
rate can be used in the formulation of the solution, but Moore solves this by using a single varying “combined” stock
return/option rate.
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Of course, the “right-rate school “of options pricing would include spinoff models derived from this base case including
such augmentation as mean reversion, jumps, stochastic elements etc. More realistic models must include mean reversion
factors and distributional abnormalities since these characteristics have been well established in the literature (Heston, 1993).
However, it would be good to establish the difficulties with the base case model before more complicated models are
considered.

History of the “Right-Rate School” at the Academy of Economics and Finance

Moore (1997)

The empirical work which was the beginning of the modern “right-rate school” can be traced to a paper, “Option Pricing:
An Expectations Model” presented by Moore (1997) at the twenty-fourth annual meeting of the Academy of Economics and
Finance at Layfette, Louisiana in 1997. The paper is discussed in Moore (1999). In it, a model was proposed where the terms
for a and c in the generic Feynman-Kac formulation are set to « , the return on the stock. The generic Feynman-Kac formulation
model is

d0F

00F
at

2
+a(s,t)aa%+b(s.t) 5 T =c(s,t)0p fort<T (14)
Or(s,T) = Og(s) (15)
Assume a lognormal process, setting the stock return and option return equal to « , substitute, and dropping f(t) yields

00F a? 2 620F

ot > 952 + aS FZ CIOF (16)

Think of this equation as the Samuelson differential equation because Samuelson (1965) argued that a and f cannot be that
far apart and suggested strong reasons why they should not diverge. But this exact equation cannot be found in a perusal of the
Samuelson (1965) paper, so any inference that Samuelson thought it was a valid empirical model is not strictly correct. This
responsibility lies with Moore. Samuelson did perform extensive analytical but not empirical work on the rational price of
warrants if @ = 5. In any event, in this version of the Feynman Kac equation, Moore proposed using « as a factor in the drift
and discount rate in the context of a lognormal process. Using this assumption, one can use the Black Scholes solution because
the required solution to this equation is mathematically equivalent to the solution to the Black Sholes equation. Their solution
flows as a matter of mathematics since the solution to all such differential equations where the discount and drift rates are the
same can be derived from the same thermodynamics’ origin (Black and Scholes, 1973). This result is a natural outcome of the
Feynman Kac theorem. The clever thermodynamic solution used in the Black Scholes is a specific application of the general
Feynman Kac mathematics (Janson and Tysk, 2006).

One can use that the Feynman Kac theorem general solution separately, through path integration methods, or find the same
expectation solution via the mathematics of the thermodynamics based Black Scholes solution. The Black Scholes formula
(1973) as a subset of the more general Feynman Kac formulation should produce the same Feynman Kac path expectation. The
problem is represented as being associated with the generic differential equation where r can be any value as:

00F a? 2 620;:

ot > 952 +rS EZ TOF (17)

where r is a generic rate, and the Black and Scholes solution now contains the generic r. The famous Black Scholes formula
used one unique r, the risk-free rate. In this 1997 paper, Moore chose to use « for r. Moore stated that this model is founded
on the assumption of a present value model which used a single rate for both the growth rate and the discount factor. In
mathematical terms, this means the solution can be found via a generic Black Scholes solution. All specific applications with
equal discount and growth rates can be solved with generic model solution which was originally solved in work associated with
thermodynamics. By setting r = a in this paper, this solution is evident. The computations are easily done on a spreadsheet
programmed with the traditional Black Scholes model but with an ex-post estimated return on the stock market as the rate
nput.

Using a sample of 300 S and P 500 Index options from the Wall Street Journal, Moore (1997) estimated the BS model prices
using estimates of the market return prevalent during the period. The sample was a bit problematic because he used the last
price listed by the Wall Street Journal on that particular day. This implied that the data had a “synchronicity” problem.
Expecting that the bias would be reduced by substituting alpha for the risk-free rate, he was surprised to find the overall
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performance of this expectations model was about the same as the Black Scholes model. In testing the two models, he found
that he could not statistically differentiate the two models. What was intriguing was that the bias pattern was flipped so that the
implied volatility was much like a mirror image of the Black Scholes model and had an increasing rather than the traditional
decreasing “implied volatility” slope. To date, there has been no other direct comparison of the Samuelson/Moore equation-
based model compared to using the Black Scholes model

The results of the model bias from the expectation model in this paper led to the conclusion that there would never be a
constant single rate that would produce a flat volatility curve across an option chain. Rather, the implied volatility patterns
suggested that the effects of @ and f would need to be combined. In order to use the thermodynamic mathematics, a single
rate combining the two rates into a variable rate would be necessary.

Moore (1999)

Moore (1999) presented a paper, “Option Pricing: A Single Factor Expectations Model”, at the twenty-sixth annual meeting
of the Academy of Economics and Finance in Little Rock Arkansas in February 1999. A major difficulty of the Moore (1997)
model was the assumption of a constant stock return rate, @ , should be used in the generic solution to the “thermodynamic
generic model” (Black Scholes generic model) regardless of strike price. Such an assumption denied that the option return
shifts dramatically across the option chain while the return on the stock is constant as the exercise price changes. Such an
assumption fails to properly treat the varying discount factor, the return on the option which varying incrementally across the
domain. Moore suggests using a varying factor which “combines” the effects of the drift rate and the discount rate to obtain a
“combined” rate, the Moore’s R. The next three papers, (Moore, 1999; 2001; 2003) are attempts to define the combined rate.
Suggesting that the generic thermodynamics solution (Black Scholes model solution) is a general solution for any generic r
chosen was not new, but the novel concept in the paper was to apply the model with a different combined rate to each point in
the domain. The procedure is validated by the logic dictating that any rate logically associated with a domain point is
mathematically valid since the general thermodynamic solution is valid at that point. This implies that a different “combined
rate” across the option chain with differing r is valid continuously at each and every point on the domain.

In the paper, Moore notes, “Since the Moore (1997) model and the Black Scholes model are essentially the same except for
the assumption of what the proper discount rate for the model, this implies that the Black Scholes model is a present value
model where the cash growth factor and the discount factor are the same. In the Black Scholes model, the rate is the risk-free
discount rate.”

In this paper, Moore suggested a leveraging measure in the spirit of Modigliani and Miller (1958). He proposes an
operationally defined “option return” expression representing the leverage of the “option return” using the partial derivative of
the stock relative to the option in a CAPM like expression. The factor for the leverage of the “option return” defined as:

Ro = (1/ N(d1))(Rm-Rf) + Rf (18)

Moore’s expression is not valid as an option return, but only as a leveraging factor. Deep in the money options where N(d1) =
one makes the expression, Ro, equal to Rs for S and P 500 options where the beta is one. The beta of an option is used in a
CAPM model to calculate expected return. The beta of an option is also the elasticity of the option relative to the stock times
the stock’s beta. The elasticity of an option is stock price divided by the call price times N(d1), the partial derivative of the
stock relative to the option.

The expression, Ro, is a reflection of the leverage of the option on the stock return which increases as the exercise price
increases (as one examines options in the direction of being out of the money). Moore uses the leverage of Ro to further define
a hybrid rate combining the return on the stock, Rs and the leverage from his operationally defined, Ro. With Rs being the
stock return, he suggests the combined rate, Moore’s R, can be found by plugging his estimates into an expression:

R(Moore’s R) = Rs/Ro *Rs (19)

This combined rate, R (Moore’s R) is plugged into the Black Scholes equation to obtain the Single Factor Model estimate.
This is reasonable since the generic r-based solution used by Black and Scholes is valid mathematically for any generic r.

The value of the model was illustrated by using the last price settlement data on S and P 500 from the Wall Street Journal
on March 20, 1997. Some of the option settlement dates were obviously stale. The t bill rate was .051 while the market return
over the period was estimated to be .07. The combined rate was calculated as described above. The N(d1) factor was from
Black Scholes (1973) model using the risk-free interest rate. Then the combined rate was plugged into the general Black Scholes
formula with the combined rate as the interest rate. A regression was run of the form,

Pi=a+bl Ai+e(t) (20)
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where Pi was the model price and Ai was the actual price. The two models were tested to see if the model price and the actual
price were the same. That is the hypothesis that bl = 1 was tested. The Black Scholes model was rejected with a beta coefficient
of 1.05 while the variable Moore model was not rejected with a coefficient of 1.009. The intercept, a, coefficient was found not
to be statistically different than 0 in the Moore model but was statistically different than zero for the Black Scholes model. The
conclusion is that the hypothesis that the model price and the actual price was the same for the Single Factor model could not
be rejected. However, this hypothesis is rejected for the Black Scholes model. The implied volatility of the Moore’s R variable
model was flat while the Black Scholes model was downward sloping. Moore concludes proclaiming, “However, the theoretical
purity implied by our illustration, one common variance across all strike prices with an implied variance closer to the actual
variance means these models deserves closer scrutiny from a theoretical perspective.”

In general, the paper can be seen as one which showed the value of using a leveraged factor for the option return. The search
for a better approach continued in the two following papers.

Moore (2001)

At the 2001 meeting of the Academy of Economics and Finance, Moore (2001) presented the paper, “An Option Model
Using the Solution Provided by the Bachelier-Einstein-Dynkin Derivation of the Fokker-Planck Equation with a Varying R”.
The paper proposed the use of the marginal implied rate of return on a portfolio of the assets held in a Bachelier-Einstein-
Dynkin derivation of the Fokker-Planck equation equilibrium as the “combined rate” input interest rate to be used in the generic
Black Scholes formula. The rate is derived from a long position of ¢(d1) stocks and a short position of ¢(d2) bonds. Each
position is multiplied by the return on that asset. This implies a portfolio return of

Rp)=¢d) X a-¢(d)XRf 1)

This portfolio return is the “Moore’s R”. The procedure is reasonable because the thermodynamics solution that Black and
Scholes use is not unique to the choice of the rate, r. In theory the ¢ (d,) term is the partial derivative defined by a Moore’s R

type model as opposed to a Black Scholes model, but there is not a large difference between the two.

It is well known that the Black-Scholes option pricing model is more accurate when its prices at the money options (McBeth
and Merville, 1979; 1980) is used. Assuming the Black-Scholes option pricing model correctly prices options at the money,
the following procedure was used:

1. Find the at-the-money option.

2. Extract the implied volatility from the at-the-money option.

3. Setup the Moore’s R equation equal to the risk-free rate.

4. Solve for the expected return on the stock and plug that expected stock return into a spreadsheet to calculate the

Moore’s R at each strike price; and

5. Compare the actual and model price fit via regression.

The improvement in the fit over the Black Scholes model was examined using a simple OLS procedure. A regression of
actual and model option prices using data for the options on Microsoft on November 13, 1996 was run. The regression was:

Pi=a+bl Ai+e(t) (22)

where Pi represents the model price, a is the intercept, bl is the regression coefficient, Ai is the actual option price and e(t)
corresponds to the error term. The models were examined as to the hypothesis that bl = 1. The results showed that the Black
Scholes model was rejected as a model with a b1 coefficient of 1.04 while the Moore model was almost a perfect fit with a bl
coefficient of 1.008. The a term in the Moore model was also not statistically different than 0. This was a nearly perfect fit for
the proposed Moore model.

Another set of options, the S and P 500 index option on January 2, 1990, was tested using the same procedure and regression.
These results did not have the perfect fit of the Microsoft data. Analysis of individual model bias across the chain showed that
the very deepest in the money options were causing the bias problem. When the deepest in the money options were removed
the proposed model did have a remarkable fit. These are the very options that are often deleted from many option studies. But
this was still troublesome! The conclusion must be that the simple Moore’s R algorithm has trouble with the very deep in the
money options.
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Moore (2003)

Moore presented a paper, “Extracting Overall Cap rates from Options Using the Bachelier Einstein - Dykin solution of the
Fokker-Plank Equation” at the 2003 AEF meeting. The paper was included in the Proceedings of the Thirtieth Annual Meeting
of the Academy of Economic and Finance at Savanna Georgia in February 2003. The paper relies on the result that the general
solution used by Black and Scholes (1973) which is an application of the Bachelier-Einstein Dykin solution of the Fokker-
Plank equation to partial differential equations of the form:

30r | 9% g2 9%0r | o 00r _
o + 2S 352 +rS 5 = r0f (23)

can be used for any r proposed. In short, the Black Scholes formula can be used for any proposed r. But here Moore wanted to
use it to numerically find the “combined rate.” The empirically derived combined rate r is still called Moore’s R (Moore, 2001;
2005). Conceptually, it is a merged rate growing the cashflows at the stock return and discounting them at the option return.
This paper solves the combined rate numerically by setting the actual option price equal to the Black Scholes formula with a
given appropriate volatility. In discussing his expectations for the “solved rate”, Moore (2003) declares, “Overall, our analysis
suggests that if a single rate is to model the combined effects of cashflow growth and discount at a leveraged rate, then the rate
must vary in a systematic way. The rate of return on the stock is a constant regardless of the stock price. The discount rate on
the related to the option increases as the strike price places the option more out of the money. Consequently, a combined rate
must decrease as the strike price increases”.

Using this method, he extracted the pattern of “implied” combined rates which he analyzed as to functional form. Discussing
the observed pattern, he articulates, “In general, our prior hypothesis of the pattern of the overall rate is supported. The deep
in the money options have higher overall cap rates than out of the money options. Most interesting is that the pattern has a
smooth functional form.”

Moore noted that the pattern across the option chain was that the overall rate fell as one moved toward the out of the money
direction. It fell functionally, systematically, smoothly and consistently from the point where the partial derivative of the stock
price to the call price called N(d1) in the Black Scholes model was about one. Consequently, the out of the money options had
very small “combined rates” consistent with the option discount factors from the option rate being very large. However, at the
point where N(d1) was about one, the expected pattern in terms of the values of the stock return and option return did not seem
to predict the slope of the “combined rate” curve. The cap rate straightened out and then started declining. Like the Moore
(2001) paper, the pattern of the combined rate also known as Moore’s R was explained by examining the predicted effect of
the return on the option which rises as one moves in the out of the money direction versus the return on the stock. It explains
the general slope of the Moore’s R curve up to the point where the option is extremely likely to be exercised. Although the
slope was as expected up until this point, the pattern disappeared and reversed itself at the very deepest in the money options.

This implies there may be more to the story than the simple interaction between the stock return and the option return
variables. In Table 1 and Figure 1 in the Moore (2003) paper, the combined stock return/option return rate falls as one moves
toward the out of the money position as one moves away from the critical point. Moore simply says, “...As the probability of
the option being exercised approaches 1, the curve flattens out.”

This minor exception to the expected pattern implies the need for future research. But overall, the general pattern was
consistent with the return on the option being an increasing function of the degree of leverage which increases as the option
return increases as one moves further and further out of the money. As the option discount rate is large, the overall Moore’s R
“combined rate” is very low for the deep out of the money options.

The paper showed that empirically applying the Bachelier Einstein Dykin solution of the Fokker-Plank Equation differential
equation continuously provides a reasonable approximation of the combined effects of growing cashflows at the return on the
stock and discounting them at the return on the option. However, the pattern where there is a very high certainty of option
exercise shows that the simple stock return/option return relationship still needs additional analysis. Analysis of individual
observations of model bias across the chain showed the same deviate pattern as the Moore (2001) paper, the very deepest in
the money options results are not explained by a simple combined rate analysis. Although there is the temptation to delete these
observations as has been done in many option studies, deleting data is always troublesome. The correct conclusion was likely
that the simple Moore’s R algorithms have trouble with the very deep in the money options. A possible explanation is that with
certainty of exercise, the value of an option , Oy (S ,t) is (S, — e™"X).
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Moore (2005)

“Extracting Expected Stock Return Correlates from Option Prices” was presented at the 2005 Meeting of the Academy of
Economics and Finance. In it, Moore (2005) combined Moore’s R concepts his 2001 and 2003 papers. By combining the two
he was able to obtain estimates of the underlying stock returns associated with the option chain. Merton (1990, p.282) claims
that such attempts are doomed to failure. Moore did not think so but he was cautious as evidenced by the title of the paper. In
the paper, he extracts Moore’s R via the 2003 paper and then sets it equal to the Moore’s R expression in the 2001 paper. The
expression in his 2001 paper for Moore’s R was defined as:

R(p) = ¢(d) X a- $(d)XRf 24)

where the hedge ratio term , #(d,), is derived from a Moore’s R type model. Setting the expression in equation 24 equal to
Moore’s R solved numerically using the 2003 paper technique allows an estimate of the underlying stock return. Surprisingly,
the technique produced shockingly consistent results across the option chain. One must be cautious that any extracted stock
return estimate from options are “true stock return estimators”, as there is reason to be leery of the thermodynamic mathematics
of Black Scholes. Thus, these model estimates are called stock return correlates. Future research will be needed to see how
close these correlates are to actual stock returns. These expected stock returns are to a large degree much like the model
constructed “implied volatility” which have no real counterpart in the real world. However, they were consistent across the
option chain suggesting they have real economic meaning. The method of inquiry was:
1. Find the at-the-money option.
. Extract the implied volatility from the at-the-money option.
3. The Moore’s R estimate at the money is the risk-free rate using the Moore (2001) paper Moore’s R estimator substitute
the known risk-free rate into it and solve for the expected return on the stock.
4. Repeat for all other options but used the extracted overall cap rate (Moore, 2003) as the Moore’s R and set it equal to
the expression in the 2001 paper.
5. Solve for the Stock return at each price.
6. Analyze the consistency of the stock return estimates across the option chain.

Using the outlined procedure, the results following the method were examined using data from Januay 2, 1990 on S and P
500 index options. The results showed remarkable consistency in the estimates of stock returns. Because of concerns about the
stock volatility, sensitivity analysis was done to test the effect of various proposed standard deviations. It was likely that the
actual volatility might be slightly different than the at the money implied volatility. The sensitivity analysis shows that slight
deviation in the standard deviation produced substantially improved consistency of the results.

Moore and Simpson (2023)

Marc Simpson presented a paper “Why the Black Sholes Model Worked — and Then It Didn’t” at the 2023 Meeting of the
Academy of Economics and Finance. The paper was a remarkable supporting piece of evidence for the “Right-Rate School”.
In the paper the authors show that the differential equation for the Black Scholes model is

d0f o? 52 a2 OF
at 2 “as2

N r0p (25)
Contrary to the current orthodox view, the “right-rate school” of option pricing takes the position that this equation implies
that the risk-free rate, the return on the stock and the return on the option are all equal to the risk-free rate. Moore and Simpson
(2023) examine the economic history of the return on stock and the risk-free rate. They find that in the initial testing period the
short-term interest rate expectations and the expectations of stock returns were not much different. This in fact implies that
there was no expected risk premium prevailing in the market. Another way of saying this is that the return on the stock, the
return on the option and the risk-free rate are economically the same in terms of the expectations relevant to the traded option.
They claim this may be why the Black Scholes model seemed to work during the tests of the 1970s data (Rubinstein, 1985)
when it was initially tested. It also explains why in the 1980s when the two rates diverged more significantly the Black Scholes
model no longer worked in the equities market (Rubinstein, 1994). His is an ironic quirk in economic history and possibly one
of the most interesting cases of serendipity in scientific history!
The paper is a critical piece of evidence in favor of the “right-rate school” of option pricing. The implication of the paper is
that the “right-rate school” is the more precise way of modeling option pricing since it compresses to the Black Scholes model
when the risk-free rate and the return on the market are equal. Because a rate explanation can explain the shift in the volatility
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smile in the early 1980s, it must lead to a serious reexamination of the Black Scholes model as the focal paradigm of option
pricing. Given the evidence in papers such as this one, it appears that the “right-rate school” is the more correct orientation.

Discussion and Conclusion

The “right-rate school” of option pricing is today one of the most disruptive theories in all of financial economics. This
paper outlines the major developments in the theory that occurred at the Academy of Economics and Finance meetings. The
theory challenges the validity of the Black Scholes model, the associated hedging arguments associated with it, and the general
risk neutral pricing framework. It suggests that a risk-free hedge is not possible since a combination of a call option hedge with
a fractional stock cannot guarantee a constant rate. Although it denies the absolute validity of the Cox and Ross (1976) risk
neutral pricing arguments, it does not deny the usefulness of the risk neutral argument as an approximation. It explains the
volatility smirk as a consequence of rational differences in rates (higher option returns as one moves to in the direction of out
the money options) rather than some mysterious and unknown volatility processes (Moore, 2003). It focuses option research
away from the predominate emphasis on the stock distribution to a large extent by focusing on the fact that the implied volatility
smile is due to differing option returns across the option chain (Moore, 2003). In short, it requires rewriting much of the
knowledge previously characterizing option pricing.

It is notable that studies using limited resources can challenge with statistical validity the predominant view of much of the
status quo option’s research. But the status quo has suggested a rocky foundation for decades. What is more remarkable is that
an organization which is open and non-critical in its approach to scholarly research played such an important role in its
development. These papers presented at the AEF are certainly interesting and should spur additional research as well as further
inquiry into the topics. Some of them may lead to significant advances in option pricing theory. Without such an atmosphere
of collegiality and open inquiry as exist in the Academy of Economics and Finance, the “right-rate school” of option pricing
and similar theoretical developments would not have a chance to advance.
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Pricing Mortgage-Backed Securities with a Skewness-
Adjusted Binomial Interest Rate Model

Stafford Johnson, Xavier University

Abstract

In a 2006 statistical study, Johnson, Zuber, and Gandar found a large number of periods of increasing and decreasing interest
rate cases in which skewness was significant. Their findings, in turn, point to the importance of using a skewness-adjusted
binomial interest rate model when pricing bond and bond derivatives when the underlying interest rate is expected to increase
or decrease. This paper explains how a skewness-adjusted binomial model can be applied to the pricing of mortgage backed
securities whose discount rate, as well as cash flows, are sensitive to interest-rate risk.

JEL: G12, G13
Keywords: Binomial; Skewness; MBS

Introduction

Johnson, Zuber, and Gandar (2006) tested for the significance of skewness in the logarithmic returns for U.S. Treasury
yields using the D’Agostino, Belanger, and D’Agostino_(1999) statistical tests of normality. They found a large number of
periods of increasing and decreasing interest rate cases in which skewness was significant. In an update of that study, Johnson
and Sen (JS) (2018) applied the D’ Agostino, Belanger, and D’ Agostino tests of normality for the logarithmic returns for 1-
year, 2-year, 5-year and 10-year U.S. Treasury yields for the period from February 15, 1977 to December 19, 2017, using
rolling 250-day periods. They similarly found a significant number of periods of increasing interest rates characterized by a
positive mean and negative skewness and a significant number of decreasing interest rate periods characterized by a negative
mean and positive skewness. Their findings, as well as other earlier studies (Koedijk, Stork, and Casper, 1992; Kon, 1990;
Aggarwal and Rao, 1990; Turner and Weigel, 1992), point to the importance of using a skewness-adjusted binomial interest
rate model when pricing bond and bond derivatives when the underlying interest rate is expected to increase or decrease.

There are two general approaches to modeling stochastic interest rate movements using a binomial model — the equilibrium
model (Rendelman and Bartter, 1980; Cox, Ingersoll, and Ross, 1981) and the calibration model (Black, Derman, and Toy,
1990; Ho and Lee, 1986; Heath, Jarrow, and Morton, 2008). Both models assume that the interest rate’s logarithmic return is
normally distributed. Camara and Chung (2006) and Johnson, Pawlukiewicz, and Mehta (JPM) (1997) have extended the Cox,
Ross, and Rubinstein (CRR) (1979) binomial option pricing model to include skewness. In the JPM skewness-adjustment
model, the upward (u) and downward parameters (d) and the probability of an increase in one period (q) values defining a
binomial process are found by setting the equations for the binomial distribution’s expected value, variance, and skewness
equal to their respective empirical values, and then solving the resulting equation system simultaneously for u, d, and q. Johnson
and Sen (2018) also adjusted the Black-Derman-Toy (BDT) binomial-interest rate model to account for skewness and showed
the BDT model loses its arbitrage-free feature when the variability conditions are not adjusted to account for skewness.

The valuation of mortgage-backed securities (MBS) is one of the more complex fixed-income securities because of the
difficulty in estimating cash flows due to the prepayment options of the mortgage borrowers. One common approach used to
determine the possible values of an MBS is vector analysis. Vector analysis involves generating a matrix of MBS values based
on different discount rates and prepayment speeds. One way to estimate different vectors is to use a binomial interest rate tree.
The purpose of this paper is to apply JPM’s skewness-adjusted binomial model to the pricing of mortgage backed securities—
securities whose discount rate, cash flows, and expected interest rate paths are sensitive to interest-rate risk.

Skewed Binomial Distributions

Binomial distributions of spot rates, S, and their corresponding logarithmic returns, g, = In(S+/So), are shown in Exhibit 1.
The exhibit shows three end-of-the-period distributions resulting from a binomial process in which the number of periods to
expiration is n = 30 and the initial spot interest rate is So= 0.10. The probability distribution in the top exhibit is generated from
a binomial process in which the upward parameter (u) is equal to 1.02, the downward parameter (d) is equal to 1/1.02 ( | Inu | =

| Ind | ) and the probability of an increase in one period (q) is equal to 0.5. In this case, the distribution approaches a normal
distribution with E(gn) = 0, V(ga) = 0.01176821, and skewness, Sk(gn), equal to zero:

11
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n
E(gn) = Z Pnj8nj

j=0
E(gn) = n[glnu + (1-qInd] = nE(g,) (1
E(gso) = 30[0.5In(1.02) + (1 — 0.5)In (1/1.02) =0

V(gn) = E[g, —E(gn]* = me[gn - E(gn)]?
j=0
V(g,) = nq(1 — q)[lnu/d)]* = nV(g,) (2)
V(gso) = 30 (0.5)(1 — 0.5) [In(1.02/1/1.02)]* = 0.01176821

Sk(gn) = E[gn —E(@n)]® = anj [gn —E(gn)]®
j=0
(3)
Sk(g,) = n[q(1 - q)*® — q*(1 = )] [Inu/d)]* = n Sk(g,)

Sk(gso) = 30[(0.5)(1 — 0.5)3 — (0.5)3(1 — 0.5)] [In (1.02/(1/1.02))]° = 0

where: g; = the logarithmic return for one period; j = the number of increases in n periods; p,; = the probability of j increases
in n periods that is defined as:
1

n! . .
= d(1=q)]
Poi = gt 9 1-9

The middle distribution reflects an increasing interest rate case in which u=1.02,d=0.99 (| Inu|> |Ind|), and q =0.75.
Here the resulting distribution is negatively skewed with a positive mean: E(g30) = 0.37018, V(g30) = 0.005013, and Sk(gzo) =
—0.00007483. The bottom distribution in Exhibit 1 reflects a decreasing interest rate case in which u = 1.01, d = 0.980392
(|1_nu | < | Ind | ), and q = 0.25; the distribution is positively skewed with a negative mean: E(gso) = —0.37018, V(g30) =
0.004979, and Sk(gso) = 0.000074.

The first distribution shown in Exhibit 1 has an expected value equal to zero for the case in which q = 0.5. This property
is the result of assuming not only that there is an equal probability of an increase or decrease in each period, but also that u and
d parameters are inversely proportional, or equivalently that the proportional increase in each period (Inu) is equal in absolute
value to the proportional decrease (Ind). However, if the distribution of the logarithmic return at the end of n periods had, for
example, a positive expected value and zero skewness, then the underlying binomial process would have been characterized
by the proportional increases in each period exceeding in absolute value the proportional decreases, with the probability of the
increase in each period being 0.5; if the distribution also had negative skewness, then the probability of the increase in one
period would have exceeded 0.5. On the other hand, if the distribution of the logarithmic return had a negative expected value
and zero skewness, then the underlying binomial process would have been characterized by the proportional decreases in each
period exceeding in absolute value the proportional increases and with q = 0.5; if the distribution also had a positive skewness,
then q would have been less than 0.5.

Skewness-adjusted Binomial Interest Rate Tree

A binomial process that converges to an end-of-the-period distribution of logarithmic returns that is normal will have equal
probabilities of the underlying security increasing or decreasing each period, whereas one that converges to a distribution that
is skewed will not. As noted, in the JPM option pricing model, the u and d parameters and q values defining a binomial process
are found by setting the equations for the binomial distribution’s expected value, variance, and skewness equal to their
respective empirical values, and then solving the resulting equation system simultaneously for u, d, and q:

E(g,) = n[glnu + (1—-q)Ind] = pe 4)
V(gn) = nq(1 — q)[Inu/d)]* =V, (%)
Sk(gy) = n[q(1—q)* — ¢*(1 = )] [Inu/d)]® = &, (6)

where: e, Ve, 0. = the empirical values of the mean, variance, and skewness for a period equal in length to n periods.
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Exhibit 1: Stable, increasing, and decreasing interest rate distributions

Distribution: n=30,u=1.02, d =0.98, q =0.50, Mean = 0.00
Var =.01176821, Skew = 0.00
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If &. is positive (negative), then q is less (greater) than 0.5; if skewness is zero, then q = 0.5 and Equations (7) and (8)
simplify to the Cox, Ross, and Rubinstein (CRR) binomial option pricing model formulas for u and d:

w= e 10
a= et -l (n
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Exhibit 2: Binomial trees for stable, increasing, and decreasing interest rate patterns
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S, R
0.06, 0.08

Pattern Su, RM, Prob

Stable 0.066, 0.088, 0.5
Increasing 0.066, 0.088, 0.6
Decreasin 0.06316, 0.08421, 0.4
Pattern Sq, Rmr, Prob

Stable 0.05455, 0.07273, 0.5
Increasing 0.057,0.076, 0.4
Decreasiny 0.05455, 0.07273, 0.6

Pattern
Stable
Increasing
Decreasing

Suus Rm’, Prob
0.0726, 0.0968, 0.25
0.0726, 0.0968, 0.36
0.726, 0.0968, 0.16

/

Pattern

Stable
Increasing
Decreasing

Sus, R™, Prob

0.06, 0.08, 0.25
0.0627, 0.0836, 0.24
0.05742, 0.07656, 0.24

Pattern
Stable
Increasing
Decreasing

Sgg, R™, Prob
0.04959, 0.06612, 0.25
0.05415, 0.0722, 0.16
0.04959, 0.06612, 0.36

Pattern Suuus R Prob

Stable 0.07986, 0.10648, 0.125
Increasing 0.07986, 0.10648, 0.216
Decreasing  0.06998, 0.09331, 0.064
Pattern Suuds RM, Prob

Stable 0.066, 0.088, 0.125
Increasing 0.06897, 0.09196, 0.144
Decreasing  0.06044, 0.08059, 0.096
Pattern Sudds RM, Prob

Stable 0.05455, 0.07273, 0.125
Increasing 0.05957, 0.7942, 0.096
Decreasing 0.522, 0.0696, 0.144
Pattern Sddds RM, Prob

Stable 0.04508, 0.06011, 0.125
Increasing 0.05144, 0.06859, 0.064
Decreasing  0.04508, 0.06011, 0.216

Stable: pe=0.00, Ve =0.036336, 8. = 0.00; u=1.1, d =.09091, and q =0.5

Increasing: pe=0.14667516, Ve=0.020633, 5. = —0.00060497; u=1.1,d =0.95, and q = 0.6

Decreasing: pe=—0.14667513, Ve = 0.020633, 8. = 0.00060497; u = 1.0526316,d = 0.9091, and q = 0.4

As an example, suppose the spot interest rate is currently at 6% and there is a market expectation of increasing rates over
the next four years with the expected distribution of logarithmic returns of spot rates having the following estimated parameters
of ue=0.14667516, V.= 0.020633, and 6. = —0.00060497. The u, d, and q values for a binomial interest rate tree that would
calibrate a binomial distribution to this distribution would be u=1.1, d = 0.95, and q = 0.6.
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1
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=110
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= 0.6

In contrast to an increasing rate case, suppose the market expects declining rates over the next four years, with the expected
distribution of logarithmic returns of spot rates having the following estimated parameters of p.=—0.14667513, V.= 0.020633,
and &, = 0.00060497. The u, d, and q values for a three-period binomial interest rate tree that calibrate a binomial distribution
to this distribution are u = 1.0526316, d = 0.9091, and q = 0.4. Finally, under a stable case where p.= 0.00, V. =0.036336, and
8. =0.00,u=1.1,d=.09091, and q =0.5.
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Exhibit 2 shows three binomial interest rate trees defined for a one-year spot rate and a mortgage refinancing rate, R,

with a maturity between 7 and 10 years and with the length of each period for the tree being one year. In the top row of each
box in the exhibit, the one-year spot rates and the refinancing rates reflect a binomial process for the stable interest rate pattern:
pe =0.00, V. =0.036336, and 6. = 0.00; u= 1.1, d =.09091, and q =0.5). The middle row in each box shows the one-year spot
and refinancing rates for an increasing interest rates scenario: .= 0.14667516, V.= 0.020633, and 6. = —0.00060497; u = 1.1,
d =0.95, and q = 0.6. Finally, the last row in each box shows the decreasing rate case: p. = —0.14667513, V. = 0.020633, and
8. = 0.00060497; u=1.0526316,d =0.9091, and q = 0.4.

MBS Valuation

In using the binomial interest rate tree approach to price an MBS or the collateral of mortgages underlying an MBS issue,
the assumption about the underlying stochastic process is important in determining the value. If rates are expected to decrease
in the future, then the value of an MBS will be greater given expected lower discount rates and greater earlier cash flows
resulting from the expected increase in the prepayment of principal. Under this interest rate scenario, an MBS should be valued
by a binomial model that is characterized by a positive expected logarithmic return and possibly negative skewness. In contrast,
if rates are expected to increase in the future, then the value of an MBS will be lower given higher expected discount rates and
lower earlier cash flows due to expected slower prepayment. In this case, the appropriate binomial model would be one that is
characterized by a negative expected return and possibly positive skewness. The impact of these different interest rate scenarios
on the value of an MBS can be examined by valuing the security using a Monte Carlo simulation approach that uses a binomial
model that captures these different cases.

With each of the binomial processes shown in Exhibit 2, there are four possible rates at the end of the third period for the
spot and refinancing rate and eight possible interest rate paths. The cash flows from an MBS or a pool of mortgages depend on
prepayment. Most analysts use a prepayment model in which the conditional prepayment rate (CPR) is determined by the
seasonality of the mortgages and a refinancing incentive that ties the interest rate paths to the proportion of the mortgage
collateral prepaid. To illustrate, consider an MBS formed from a mortgage pool with a par value of $1 million, weighted average
coupon rate (WAC) = 8%, and weighted average maturity (WAM) = 10 years. To fit this example to the three-period binomial
trees, assume that the mortgages in the pool all make annual cash flows, that all have a balloon payment at the end of year 4,
and that the pass-through rate on the MBS formed from the mortgage portfolio is equal to the WAC of 8%. This mortgage
pool can be viewed as a four-year asset with a principal payment made at the end of year four that is equal to the original
principal less the amount paid down. A simple prepayment model to apply to this mortgage pool is shown in Table 1. The
prepayment model assumes the annual CPR is equal to 5% if the current refinancing rate is equal to the WAC of 8% or greater
(X =WAC,— R <0). If the refinancing rate is less than the WAC of 8% (X = WAC,— R > 0), though, the model assumes
that the CPR will exceed 5% and that it will increase within certain ranges as X (= WAC; — R**') increases.

Table 1: Conditional prepayment model

X =WAC — RRef WAC =8%
Range CPR
X<5% 5%

0.0% <X <0.5% 10%

0.5% <X <1.0% 20%

1.0% <X < 1.5% 30%

1.5% <X <2.0% 40%

2.0% <X <25% 50%

2.5% <X <3.0% 60%
X>3.0% 70%

The cash flows (CF) for each of the eight interest rate paths for the stable interest rate case are presented in Exhibit 3. As
shown, the cash flows for path 1 (the path with three consecutive decreases in rates) consist of $335,224 in year 1 (interest =
$80,000, scheduled principal = $69,029, and prepaid principal = $186,194, reflecting a CPR of 0.20), $324,764 in year 2, with
$205,540 being prepaid principal (CPR = 0.30), $257,259 in year 3, with $173,802 being prepaid principal (CPR = 0.40), and
$281,560 in year 4. The year 4 cash flow with the balloon payment is equal to the principal balance at the beginning of the year
and the 8% interest on that balance. In contrast, the cash flows for path 8 (the path with three consecutive interest rate increases)
are smaller in the first three years and larger in year 4, reflecting the low CPR of 5% in each period.

Given the cash flows of each path, the value of a path is:
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where: Z; = Discount rate = S+ k; k = Risk premium = Option-adjusted spread

The discount rate, Z, is the risk-adjusted spot rate. This rate is equal to the riskless spot rate, S, plus a risk premium, k.
Assuming the underlying mortgages are insured against default, the risk premium would only reflect the additional return
needed to compensate MBS investors for the prepayment risk they are assuming. This premium is referred to as the option-
adjusted spread (OAS). For this example, the OAS is assumed to be 2% greater than the one-year, riskless spot rates. From
these current and future one-year spot rates, the current 1-year, 2-year, 3-year, and 4-year equilibrium spot rates are obtained
for each path by using the geometric mean (Exhibit 3, Column 10). Thus, the set of spot rates used to discount the cash flows
for path 1 are:

Z,=10.08
Z>=1[(1.08)(1.074546)]"* — 1 = 0.077269
Z5=1[(1.08)(1.074546)(1.069588)]"3 — 1 = 0.0747029
Z4=1[(1.08)(1.074546)(1.069588)(1.06508)]"* - 1 = 0.72289
Using these rates, the value of path 1 is $1,010,465:

$335,224 $324,764 $257,259 $281,560

VPathl —
0 108 ' (1.077269)2 T (1.0747029)°  (1.072289)"

=$1,010,465

The risk-adjusted spot rates and values for the eight paths are shown in Columns 10 and 11 in Exhibit 3. The theoretical
value of the MBS is the weighted average of the values of all of the interest rate paths, with the weights being the probabilities
of attaining each path. With q = 0.5, the probability of attaining any path in this three-period example is 0.125, yielding a
theoretical value of $997,457.

The MBS value of $997,457 is obtained from a binomial tree that reflects a stable interest rate pattern with an expected
logarithmic return and skewness of zero. Suppose, however, the decreasing interest rates scenario were expected (pe =
—0.14667513, V. = 0.020633, and 3. = 0.00060497; u = 1.0526316, d = 0.9091, and q = 0.4). Exhibit 4 shows the cash flows
from the mortgage pool, discount rates, values, and probabilities for each path. The theoretical value of the MBS pool under
this scenario is $1,003,871, exceeding the value obtained in the previous case. This larger value reflects the decreasing interest
rate case in which there are a greater number of paths with larger CPRs and with greater probabilities associated with those
paths. Note, if the probability of the decrease in each period were 0.8 instead of 0.6, then the theoretical value would be even
higher ($1,006,880). This is a case of greater positive skewness (0.0003025), reflecting greater decreasing rates. In this case,
the size of the CPRs is greater in more paths and the probabilities for decreasing interest rates paths are greater.

Instead of an expected decreasing or stable interest rates patterns, suppose the increasing interest rates scenario were
expected (Le= 0.14667516, V.= 0.020633, 5. = —0.00060497; u= 1.1, d = 0.95, and q = 0.6). Exhibit 5 shows the cash flows
of the mortgage pool, discount rates, values, and probabilities for the eight paths for this scenario. In this increasing binomial
interest rate case, the theoretical value of the MBS pool is only $991,462. This lower value reflects a greater number of paths
with lower CPRs and greater probabilities associated with those paths. Note that if the probability of the increase in each period
were 0.8 instead of 0.6, then the theoretical value would be even lower ($985,161). This is a case of a greater negative skewness
(-0.0003025), reflecting greater increasing rates. In this case, the size of the CPRs is smaller in more paths and the probabilities
for increasing interest rates paths are greater.
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Exhibit 3: Valuation of MBS for stable interest rate pattern

1
Year

1
2
3
4

W N = N S N S AW N = AW N~ AW N =

AW N~

2
chf
0.073
0.066
0.060

0.073
0.066
0.073

0.073
0.080
0.073

0.088
0.080
0.073

0.073
0.080
0.088

0.088
0.080
0.088

0.088
0.096
0.088

0.088
0.096
0.106

3
Balance
$1,000,000
$744,776
$479,594
$260,703

$1,000,000
$744,776
$479,594
$347,604

$1,000,000
$744,776

$650,878
$471,749

$1,000,000
$884,422
$772,918
$560,202

$1,000,000
$744,776
$650,878
$560,202

$1,000,000
$884,422
$772,918
$665,240

$1,000,000
$884,422
$772,918
$665,240

$1,000,000
$884,422
$772,918
$665,240

4
Interest
$80,000
$59,582
$38,368
$20,856

$80,000
$59,582
$38,368
$27,808

$80,000
$59,582

$52,070
$37,740

$80,000
$70,754
$61,833
$44,816

$80,000
$59,582
$52,070
$44.816

$80,000
$70,754
$61,833
$53,219

$80,000
$70,754
$61,833
$53,219

$80,000
$70,754
$61,833
$53,219

5
Sch Pr
$69,029
$59,641
$45,089

$69,029
$59,641
$45,089

$69,029
$59,641
$61,192

$69,029
$70,824
$72,666

$69,029
$59,641
$61,192

$69,029
$70,824
$72,666

$69,029
$70,824
$72,666

$69,029
$70,824
$72,666

6
CPR
0.20
0.30
0.40

0.20
0.30
0.20

0.20
0.05
0.20

0.05
0.05
0.20

0.20
0.05
0.05

0.05
0.05
0.05

0.05
0.05
0.05

0.05
0.05
0.05

7
Pre Pr

$186,194
$205,540
$173,802

Path 1

$186,194
$205,540
$86,901

Path 2

$186,194
$34,257
$117,937

Path 3

$46,549
$40,680
$140,050

Path 4

$186,194
$34,257
$29,484

Path §

$46,549
$40,680
$35,013

Path 6

$46,549
$40,680
$35,013

Path 7

$46,549
$40,680
$35,013

Path 8

8
CF
$335,224
$324,764
$257,259
$281,560

$335,224
$324,764
$170,358
$375,413

$335,224
$153,480

$231,200
$509,489

$195,578
$182,258
$274,550
$605,018

$335,224
$153,480
$142,747
$605,018

$195,578
$182,258
$169,512
$718,459

$195,578
$182,258
$169,512
$718,459

$195,578
$182,258
$169,512
$718,459

9
Z1,t1
0.080
0.075
0.070
0.065

0.080
0.075
0.070
0.075

0.080
0.075

0.080
0.075

0.080
0.086
0.080
0.075

0.0800
0.0745
0.0800
0.0860

0.080
0.086
0.080
0.086

0.080
0.086
0.093
0.086

0.080
0.086
0.093
0.100

10
Zw
0.0800
0.0773
0.0747

0.0723
Value

0.0800
0.0773
0.0747

0.0747
Value

0.0800
0.0773

0.0782
0.0773
Value

0.0800
0.0830
0.0820

0.080
Value

0.0800
0.0773
0.0782

0.0801
Value

0.080
0.083
0.082

0.083
Value

0.080
0.083
0.086

0.086
Value

0.080
0.083
0.086

0.090
Value

11
Value
$310,392
$279.,846
$207,255

$212,972
$1,010,465

$310,392
$279,846
$137,245

$281,461
$1,008,945

$310,392
$132,253

$184,465
$378,301
$1,005,411

$181,091
$155,393
$216,742

$444,494
$997,720

$310,392
$132,253
$113,892

$444,494
$1,001,031

$181,091
$155,393
$133,820

$522,269
$992,574

$181,091
$155,393
$132,277

$516,247
$985,008

$181,091
$155,393
$132,277

$509,741
$978,502

Theoretical
Value

12
Prob.
0.5
0.5
0.5

0.125

0.5
0.5
0.5

0.125

0.5
0.5
0.5

0.125

0.5
0.5
0.5

0.125

0.5
0.5
0.5

0.125

0.5
0.5
0.5

0.125

0.5
0.5
0.5

0.125

0.5
0.5
0.5

0.125
$997,457
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Exhibit 4: Valuation of MBS for decreasing interest rate pattern

1
Year

1
2
3
4

WO = AW N = AW NN = VS S VS S AW =

AW N~

2
chf
0.073
0.066
0.060

0.073
0.066
0.070

0.0727
0.0766
0.0696

0.0842
0.0766
0.0696

0.0727
0.0766
0.0806

0.0842
0.0766
0.0806

0.0842
0.0886
0.0806

0.0842
0.0886
0.0933

3
Balance
$1,000,000
$744,776
$479,594
$260,703

$1,000,000
$744,776
$479,594
$304,154

$1,000,000
$744,776
$616,621
$391,055

$1,000,000
$884,422
$732,238
$464,378

$1,000,000
$744,776
$616,621
$530,717

$1,000,000
$884,422
$732,238
$630,227

$1,000,000
$884,422
$772,918
$665,240

$1,000,000
$884,422
$772,918
$665,240

4
Interest
$80,000
$59,582
$38,368
$20,856

$80,000
$59,582
$38,368
$24,332

$80,000
$59,582
$49,330
$31,284

$80,000
$70,754
$58,579
$37,150

$80,000
$59,582
$49,330
$42,457

$80,000
$70,754
$58,579
$50,418

$80,000
$70,754
$61,833
$53,219

$80,000
$70,754
$61,833
$53,219

5
Sch Pr
$69,029
$59,641
$45,089

$69,029
$59,641
$45,089

$69,029
$59,641
$57,972

$69,029
$70,824
$68,841

$69,029
$59,641
$57,972

$69,029
$70,824
$68,841

$69,029
$70,824
$72,666

$69,029
$70,824
$72,666

6
CPR
0.2
0.3
0.4

0.2
0.3
0.3

0.2
0.1
0.3

0.05
0.10
0.30

0.20
0.10
0.05

0.05
0.10
0.05

0.05
0.05
0.05

0.05
0.05
0.05

7
Pre Pr

$186,194
$205,540
$173,802

Path 1

$186,194
$205,540
$130,352

Path 2

$186,194
$68,513
$167,595

Path 3

$46,549
$81,360
$199,019

Path 4

$186,194
$68,513
$27,932

Path S

$46,549
$81,360
$33,170

Path 6

$46,549
$40,680
$35,013

Path 7

$46,549
$40,680
$35,013

Path 8

8
CF
$335,224
$324,764
$257,259
$281,560

$335,224
$324,764
$213,808
$328,486

$335,224
$187,737
$274,896
$422.339

$195,578
$222,938
$326,439
$501,528

$335,224
$187,737
$135,234
$573,175

$195,578
$222,938
$160,590
$680,645

$195,578
$182,258
$169,512
$718,459

$195,578
$182,258
$169,512
$718,459

9
Z 1,t1
0.080
0.075
0.070
0.065

0.080
0.075
0.070
0.072

0.080
0.075
0.077
0.072

0.080
0.083
0.077
0.072

0.080
0.075
0.077
0.080

0.080
0.083
0.077
0.080

0.080
0.083
0.086
0.080

0.080
0.083
0.086
0.090

10
Zw
0.080
0.077
0.075

0.072
Value

0.080
0.077
0.075

0.074
Value

0.080
0.077
0.077

0.076
Value

0.080
0.082
0.080

0.078
Value

0.080
0.077
0.077

0.078
Value

0.080
0.082
0.080

0.080
Value

0.080
0.082
0.083

0.083
Value

0.080
0.082
0.083

0.085
Value

11
Value
$310,392
$279.,846
$207,255

$212,972
$1,010,465

$310,392
$279,846
$172,250

$246,818
$1,009,306

$310,392
$161,